Using HPC for Computational Fluid Dynamics

Author: Shamoon Jamshed
Publisher: Academic Press
ISBN: 0128017511
Format: PDF, ePub, Mobi
Download Now
Using HPC for Computational Fluid Dynamics: A Guide to High Performance Computing for CFD Engineers offers one of the first self-contained guides on the use of high performance computing for computational work in fluid dynamics. Beginning with an introduction to HPC, including its history and basic terminology, the book moves on to consider how modern supercomputers can be used to solve common CFD challenges, including the resolution of high density grids and dealing with the large file sizes generated when using commercial codes. Written to help early career engineers and post-graduate students compete in the fast-paced computational field where knowledge of CFD alone is no longer sufficient, the text provides a one-stop resource for all the technical information readers will need for successful HPC computation. Offers one of the first self-contained guides on the use of high performance computing for computational work in fluid dynamics Tailored to the needs of engineers seeking to run CFD computations in a HPC environment

Introduction to High Performance Computing for Scientists and Engineers

Author: Georg Hager
Publisher: CRC Press
ISBN: 9781439811931
Format: PDF, ePub
Download Now
Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the authors gained a unique perspective on the requirements and attitudes of users as well as manufacturers of parallel computers. The text first introduces the architecture of modern cache-based microprocessors and discusses their inherent performance limitations, before describing general optimization strategies for serial code on cache-based architectures. It next covers shared- and distributed-memory parallel computer architectures and the most relevant network topologies. After discussing parallel computing on a theoretical level, the authors show how to avoid or ameliorate typical performance problems connected with OpenMP. They then present cache-coherent nonuniform memory access (ccNUMA) optimization techniques, examine distributed-memory parallel programming with message passing interface (MPI), and explain how to write efficient MPI code. The final chapter focuses on hybrid programming with MPI and OpenMP. Users of high performance computers often have no idea what factors limit time to solution and whether it makes sense to think about optimization at all. This book facilitates an intuitive understanding of performance limitations without relying on heavy computer science knowledge. It also prepares readers for studying more advanced literature. Read about the authors’ recent honor: Informatics Europe Curriculum Best Practices Award for Parallelism and Concurrency

Using MPI

Author: William Gropp
Publisher: MIT Press
ISBN: 0262527391
Format: PDF, ePub, Docs
Download Now
This book offers a thoroughly updated guide to the MPI (Message-Passing Interface) standard library for writing programs for parallel computers. Since the publication of the previous edition of Using MPI, parallel computing has become mainstream. Today, applications run on computers with millions of processors; multiple processors sharing memory and multicore processors with multiple hardware threads per core are common. The MPI-3 Forum recently brought the MPI standard up to date with respect to developments in hardware capabilities, core language evolution, the needs of applications, and experience gained over the years by vendors, implementers, and users. This third edition of Using MPI reflects these changes in both text and example code. The book takes an informal, tutorial approach, introducing each concept through easy-to-understand examples, including actual code in C and Fortran. Topics include using MPI in simple programs, virtual topologies, MPI datatypes, parallel libraries, and a comparison of MPI with sockets. For the third edition, example code has been brought up to date; applications have been updated; and references reflect the recent attention MPI has received in the literature. A companion volume, Using Advanced MPI, covers more advanced topics, including hybrid programming and coping with large data.

CUDA by Example

Author: Jason Sanders
Publisher: Addison-Wesley Professional
ISBN: 0132180138
Format: PDF, Docs
Download Now
CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required—just the ability to program in a modestly extended version of C. CUDA by Example, written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You’ll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered include Parallel programming Thread cooperation Constant memory and events Texture memory Graphics interoperability Atomics Streams CUDA C on multiple GPUs Advanced atomics Additional CUDA resources All the CUDA software tools you’ll need are freely available for download from NVIDIA. http://developer.nvidia.com/object/cuda-by-example.html

Petascale Computing

Author: David A. Bader
Publisher: CRC Press
ISBN: 9781584889106
Format: PDF
Download Now
Although the highly anticipated petascale computers of the near future will perform at an order of magnitude faster than today’s quickest supercomputer, the scaling up of algorithms and applications for this class of computers remains a tough challenge. From scalable algorithm design for massive concurrency toperformance analyses and scientific visualization, Petascale Computing: Algorithms and Applications captures the state of the art in high-performance computing algorithms and applications. Featuring contributions from the world’s leading experts in computational science, this edited collection explores the use of petascale computers for solving the most difficult scientific and engineering problems of the current century. Covering a wide range of important topics, the book illustrates how petascale computing can be applied to space and Earth science missions, biological systems, weather prediction, climate science, disasters, black holes, and gamma ray bursts. It details the simulation of multiphysics, cosmological evolution, molecular dynamics, and biomolecules. The book also discusses computational aspects that include the Uintah framework, Enzo code, multithreaded algorithms, petaflops, performance analysis tools, multilevel finite element solvers, finite element code development, Charm++, and the Cactus framework. Supplying petascale tools, programming methodologies, and an eight-page color insert, this volume addresses the challenging problems of developing application codes that can take advantage of the architectural features of the new petascale systems in advance of their first deployment.

Fluid Mechanics and Fluid Power Contemporary Research

Author: Arun K. Saha
Publisher: Springer
ISBN: 8132227433
Format: PDF
Download Now
This volume comprises the proceedings of the 42nd National and 5th International Conference on Fluid Mechanics and Fluid Power held at IIT Kanpur in December, 2014.The conference proceedings encapsulate the best deliberations held during the conference. The diversity of participation in the conference, from academia, industry and research laboratories reflects in the articles appearing in the volume. This contributed volume has articles from authors who have participated in the conference on thematic areas such as Fundamental Issues and Perspectives in Fluid Mechanics; Measurement Techniques and Instrumentation; Computational Fluid Dynamics; Instability, Transition and Turbulence; Turbomachinery; Multiphase Flows; Fluid‐Structure Interaction and Flow‐Induced Noise; Microfluidics; Bio‐inspired Fluid Mechanics; Internal Combustion Engines and Gas Turbines; and Specialized Topics. The contents of this volume will prove useful to researchers from industry and academia alike.

Numerical Heat Transfer and Fluid Flow

Author: Suhas Patankar
Publisher: CRC Press
ISBN: 9780891165224
Format: PDF, ePub
Download Now
This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.

The Potential Impact of High End Capability Computing on Four Illustrative Fields of Science and Engineering

Author: Division on Engineering and Physical Sciences
Publisher: National Academies Press
ISBN: 0309124859
Format: PDF, Kindle
Download Now
Many federal funding requests for more advanced computer resources assume implicitly that greater computing power creates opportunities for advancement in science and engineering. This has often been a good assumption. Given stringent pressures on the federal budget, the White House Office of Management and Budget (OMB) and Office of Science and Technology Policy (OSTP) are seeking an improved approach to the formulation and review of requests from the agencies for new computing funds. This book examines, for four illustrative fields of science and engineering, how one can start with an understanding of their major challenges and discern how progress against those challenges depends on high-end capability computing (HECC). The four fields covered are: atmospheric science astrophysics chemical separations evolutionary biology This book finds that all four of these fields are critically dependent on HECC, but in different ways. The book characterizes the components that combine to enable new advances in computational science and engineering and identifies aspects that apply to multiple fields.