Underwater Acoustic Modeling and Simulation Fourth Edition

Author: Paul C. Etter
Publisher: CRC Press
ISBN: 1466564946
Format: PDF, ePub
Download Now
Underwater Acoustic Modeling and Simulation, Fourth Edition continues to provide the most authoritative overview of currently available propagation, noise, reverberation, and sonar-performance models. This fourth edition of a bestseller discusses the fundamental processes involved in simulating the performance of underwater acoustic systems and emphasizes the importance of applying the proper modeling resources to simulate the behavior of sound in virtual ocean environments. New to the Fourth Edition Extensive new material that addresses recent advances in inverse techniques and marine-mammal protection Problem sets in each chapter Updated and expanded inventories of available models Designed for readers with an understanding of underwater acoustics but who are unfamiliar with the various aspects of modeling, the book includes sufficient mathematical derivations to demonstrate model formulations and provides guidelines for selecting and using the models. Examples of each type of model illustrate model formulations, model assumptions, and algorithm efficiency. Simulation case studies are also included to demonstrate practical applications. Providing a thorough source of information on modeling resources, this book examines the translation of our physical understanding of sound in the sea into mathematical models that simulate acoustic propagation, noise, and reverberation in the ocean. The text shows how these models are used to predict and diagnose the performance of complex sonar systems operating in the undersea environment.

Underwater Acoustic Modelling and Simulation Third Edition

Author: P.C. Etter
Publisher: CRC Press
ISBN: 9780203417652
Format: PDF, ePub
Download Now
Underwater Acoustic Modeling and Simulation examines the translation of our physical understanding of sound in the sea into mathematical models that can simulate acoustic propagation, noise and reverberation in the ocean. These models are used in a variety of research and operational applications to predict and diagnose the performance of complex sonar systems operating in the undersea environment. Previous editions of the book have provided invaluable guidance to sonar technologists, acoustical oceanographers and applied mathematicians in the selection and application of underwater acoustic models. Now that simulation is fast becoming an accurate, efficient and economical alternative to field-testing and at-sea training, this new edition will also provide useful guidance to systems engineers and operations analysts interested in simulating sonar performance. Guidelines for selecting and using available propagation, noise and reverberation models are highlighted. Specific examples of each type of model are discussed to illustrate model formulations, assumptions and algorithm efficiency. Instructive case studies demonstrate applications in sonar simulation.

Underwater Acoustics

Author: Richard P. Hodges
Publisher: John Wiley & Sons
ISBN: 1119957494
Format: PDF, ePub, Mobi
Download Now
Offering complete and comprehensive coverage of modern sonar spectrum system analysis, Underwater Acoustics: Analysis, Design and Performance of Sonar provides a state-of-the-art introduction to the subject and has been carefully structured to offer a much-needed update to the classic text by Urick. Expanded to included computational approaches to the topic, this book treads the line between the highly theoretical and mathematical texts and the more populist, non-mathematical books that characterize the existing literature in the field. The author compares and contrasts different techniques for sonar design, analysis and performance prediction and includes key experimental and theoretical results, pointing the reader towards further detail with extensive references. Practitioners in the field of sonar design, analysis and performance prediction as well as graduate students and researchers will appreciate this new reference as an invaluable and timely contribution to the field. Chapters include the sonar equation, radiated, self and ambient noise, active sonar sources, transmission loss, reverberation, transducers, active target strength, statistical detection theory, false alarms, contacts and targets, variability and uncertainty, modelling detections and tactical decision aids, cumulative probability of detection, tracking target motion analysis and localization, and design and evaluation of sonars

Autonomous Underwater Vehicles

Author: Sabiha Wadoo
Publisher: CRC Press
ISBN: 9781439818329
Format: PDF
Download Now
Underwater vehicles present some difficult and very particular control system design problems. These are often the result of nonlinear dynamics and uncertain models, as well as the presence of sometimes unforeseeable environmental disturbances that are difficult to measure or estimate. Autonomous Underwater Vehicles: Modeling, Control Design, and Simulation outlines a novel approach to help readers develop models to simulate feedback controllers for motion planning and design. The book combines useful information on both kinematic and dynamic nonlinear feedback control models, providing simulation results and other essential information, giving readers a truly unique and all-encompassing new perspective on design. Includes MATLAB® Simulations to Illustrate Concepts and Enhance Understanding Starting with an introductory overview, the book offers examples of underwater vehicle construction, exploring kinematic fundamentals, problem formulation, and controllability, among other key topics. Particularly valuable to researchers is the book’s detailed coverage of mathematical analysis as it applies to controllability, motion planning, feedback, modeling, and other concepts involved in nonlinear control design. Throughout, the authors reinforce the implicit goal in underwater vehicle design—to stabilize and make the vehicle follow a trajectory precisely. Fundamentally nonlinear in nature, the dynamics of AUVs present a difficult control system design problem which cannot be easily accommodated by traditional linear design methodologies. The results presented here can be extended to obtain advanced control strategies and design schemes not only for autonomous underwater vehicles but also for other similar problems in the area of nonlinear control.

Simulation and Modeling of Systems of Systems

Author: Pascal Cantot
Publisher: John Wiley & Sons
ISBN: 1118616952
Format: PDF, Kindle
Download Now
Systems engineering is the design of a complex interconnection of many elements (a system) to maximize a specific measure of system performance. It consists of two parts: modeling, in which each element of the system and its performance criteria are described; and optimization in which adjustable elements are tailored to allow peak performance. Systems engineering is applied to vast numbers of problems in industry and the military. An example of systems engineering at work is the control of the timing of thousands of city traffic lights to maximize traffic flow. The complex and intricate field of electronics and computers is perfectly suited for systems engineering analysis and in turn, advances in communications and computer technology have made more advanced systems engineering problems solvable. Thus, the two areas fed off of one another. This book is a basic introduction to the use of models and methods in the engineering design of systems. It is aimed at students as well as practicing engineers. The concept of the "systems of systems" is discussed extensively, after a critical comparison of the different definitions and a range of various practical illustrations. It also provides key answers as to what a system of systems is and how its complexity can be mastered.

Acoustic Analyses Using Matlab and Ansys

Author: Carl Q. Howard
Publisher: CRC Press
ISBN: 1482223252
Format: PDF, ePub, Mobi
Download Now
Techniques and Tools for Solving Acoustics Problems This is the first book of its kind that describes the use of ANSYS® finite element analysis (FEA) software, and MATLAB® engineering programming software to solve acoustic problems. It covers simple text book problems, such as determining the natural frequencies of a duct, to progressively more complex problems that can only be solved using FEA software, such as acoustic absorption and fluid-structure-interaction. It also presents benchmark cases that can be used as starting points for analysis. There are practical hints too for using ANSYS software. The material describes how to solve numerous problems theoretically, and how to obtain solutions from the theory using MATLAB engineering software, as well as analyzing the same problem using ANSYS Workbench and ANSYS Mechanical APDL. Developed for the Practicing Engineer Free downloads on http://www.mecheng.adelaide.edu.au/avc/software, including MATLAB source code, ANSYS APDL models, and ANSYS Workbench models Includes readers’ techniques and tips for new and experienced users of ANSYS software Identifies bugs and deficiencies to help practitioners avoid making mistakes Acoustic Analyses Using MATLAB® and ANSYS® can be used as a textbook for graduate students in acoustics, vibration, and related areas in engineering; undergraduates in mechanical and electrical engineering; and as an authoritative reference for industry professionals.

Computational Ocean Acoustics

Author: Finn B. Jensen
Publisher: Springer Science & Business Media
ISBN: 9781441986788
Format: PDF, Mobi
Download Now
Senior level/graduate level text/reference presenting state-of-the- art numerical techniques to solve the wave equation in heterogeneous fluid-solid media. Numerical models have become standard research tools in acoustic laboratories, and thus computational acoustics is becoming an increasingly important branch of ocean acoustic science. The first edition of this successful book, written by the recognized leaders of the field, was the first to present a comprehensive and modern introduction to computational ocean acoustics accessible to students. This revision, with 100 additional pages, completely updates the material in the first edition and includes new models based on current research. It includes problems and solutions in every chapter, making the book more useful in teaching (the first edition had a separate solutions manual). The book is intended for graduate and advanced undergraduate students of acoustics, geology and geophysics, applied mathematics, ocean engineering or as a reference in computational methods courses, as well as professionals in these fields, particularly those working in government (especially Navy) and industry labs engaged in the development or use of propagating models.

Mobile to mobile Wireless Channels

Author: Alenka Zajić
Publisher: Artech House
ISBN: 1608074951
Format: PDF, ePub
Download Now
Present-day mobile communications systems can be classified as fixed-to-mobile because they allow mobility on only one end (e.g. the mobile phone to a fixed mobile operator's cell tower). In answer to the consumer demand for better coverage and quality of service, emerging mobile-to-mobile (M-to-M) communications systems allow mobile users or vehicles to directly communicate with each other. This practical book provides a detailed introduction to state-of-the-art M-to-M wireless propagation. Moreover, the book offers professionals guidance for rapid implementation of these communications systems. It offers engineers and students a thorough understanding of signal propagation and channel models for vehicle-to-vehicle, air-to-ground, and underwater vehicle-to-underwater vehicle communications.. This authoritative resource is packed with over 1000 equations and more than 100 illustrations. DVD Included! Contains time-saving MATLAB code for the models discussed in the book, providing valuable tools that engineers can use for their projects in the field.

Digital Sonar Design in Underwater Acoustics

Author: Qihu Li
Publisher: Springer Science & Business Media
ISBN: 3642182909
Format: PDF, Mobi
Download Now
"Digital Sonar Design in Underwater Acoustics Principles and Applications" provides comprehensive and up-to-date coverage of research on sonar design, including the basic theory and techniques of digital signal processing, basic concept of information theory, ocean acoustics, underwater acoustic signal propagation theory, and underwater signal processing theory. This book discusses the general design procedure and approaches to implementation, the design method, system simulation theory and techniques, sonar tests in the laboratory, lake and sea, and practical validation criteria and methods for digital sonar design. It is intended for researchers in the fields of underwater signal processing and sonar design, and also for navy officers and ocean explorers. Qihu Li is a professor at the Institute of Acoustics, Chinese Academy of Sciences, and an academician of the Chinese Academy of Sciences.

Underwater Acoustic Sensor Networks

Author: Yang Xiao
Publisher: CRC Press
ISBN: 9781420067125
Format: PDF
Download Now
A detailed review of underwater channel characteristics, Underwater Acoustic Sensor Networks investigates the fundamental aspects of underwater communication. Prominent researchers from around the world consider contemporary challenges in the development of underwater acoustic sensor networks (UW-ASNs) and introduce a cross-layer approach for effective integration of all communication functionalities. Discussing architectures for two- and three-dimensional sensor networks, this authoritative resource clearly delineates the main differences between terrestrial and underwater sensor networks—covering the wide range of topics related to UW-ASNs. It examines efficient distributed routing algorithms for delay-insensitive and delay-sensitive applications and introduces a realistic acoustic model characterized by channel utilization efficiency that enables proper setting of the optimal packet size for underwater communication. It also: Provides efficient sensor communication protocols for the underwater environment Addresses the topology control problem for sparse and dense 3D networks Presents a novel distributed MAC protocol that incorporates a unique closed-loop distributed algorithm for setting the optimal transmit power and code length The book includes coverage of routing, fault tolerance, time synchronization, optimal clustering, medium access control, software, hardware, and channel modeling. Exploring the need to design an energy-efficient cross-layer protocol suite, this resource provides the understanding required to achieve high-performance channel access, routing, event transport reliability, and data flow control with underwater acoustic sensors.