Theory and Methods of Statistics

Author: P.K. Bhattacharya
Publisher: Academic Press
ISBN: 0128041234
Format: PDF, Mobi
Download Now
Theory and Methods of Statistics covers essential topics for advanced graduate students and professional research statisticians. This comprehensive resource covers many important areas in one manageable volume, including core subjects such as probability theory, mathematical statistics, and linear models, and various special topics, including nonparametrics, curve estimation, multivariate analysis, time series, and resampling. The book presents subjects such as "maximum likelihood and sufficiency," and is written with an intuitive, heuristic approach to build reader comprehension. It also includes many probability inequalities that are not only useful in the context of this text, but also as a resource for investigating convergence of statistical procedures. Codifies foundational information in many core areas of statistics into a comprehensive and definitive resource Serves as an excellent text for select master’s and PhD programs, as well as a professional reference Integrates numerous examples to illustrate advanced concepts Includes many probability inequalities useful for investigating convergence of statistical procedures

Essential Statistical Inference

Author: Dennis D. Boos
Publisher: Springer Science & Business Media
ISBN: 1461448182
Format: PDF, Kindle
Download Now
​This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems. An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology. Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods. ​

Robust Statistics

Author: Ricardo A. Maronna
Publisher: Wiley
ISBN: 9780470010921
Format: PDF, ePub, Mobi
Download Now
Classical statistical techniques fail to cope well with deviations from a standard distribution. Robust statistical methods take into account these deviations while estimating the parameters of parametric models, thus increasing the accuracy of the inference. Research into robust methods is flourishing, with new methods being developed and different applications considered. Robust Statistics sets out to explain the use of robust methods and their theoretical justification. It provides an up-to-date overview of the theory and practical application of the robust statistical methods in regression, multivariate analysis, generalized linear models and time series. This unique book: Enables the reader to select and use the most appropriate robust method for their particular statistical model. Features computational algorithms for the core methods. Covers regression methods for data mining applications. Includes examples with real data and applications using the S-Plus robust statistics library. Describes the theoretical and operational aspects of robust methods separately, so the reader can choose to focus on one or the other. Supported by a supplementary website featuring time-limited S-Plus download, along with datasets and S-Plus code to allow the reader to reproduce the examples given in the book. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is ideal for researchers, practitioners and graduate students of statistics, electrical, chemical and biochemical engineering, and computer vision. There is also much to benefit researchers from other sciences, such as biotechnology, who need to use robust statistical methods in their work.

Statistical Hypothesis Testing

Author: Ning-Zhong Shi
Publisher: World Scientific
ISBN: 9812814361
Format: PDF
Download Now
This book presents up-to-date theory and methods of statistical hypothesis testing based on measure theory. The so-called statistical space is a measurable space adding a family of probability measures. Most topics in the book will be developed based on this term. The book includes some typical data sets, such as the relation between race and the death penalty verdict, the behavior of food intake of two kinds of Zucker rats, and the per capita income and expenditure in China during the 1978?2002 period. Emphasis is given to the process of finding appropriate statistical techniques and methods of evaluating these techniques.

Bayes Linear Statistics Theory and Methods

Author: Michael Goldstein
Publisher: John Wiley & Sons
ISBN: 9780470065679
Format: PDF
Download Now
Bayesian methods combine information available from data with any prior information available from expert knowledge. The Bayes linear approach follows this path, offering a quantitative structure for expressing beliefs, and systematic methods for adjusting these beliefs, given observational data. The methodology differs from the full Bayesian methodology in that it establishes simpler approaches to belief specification and analysis based around expectation judgements. Bayes Linear Statistics presents an authoritative account of this approach, explaining the foundations, theory, methodology, and practicalities of this important field. The text provides a thorough coverage of Bayes linear analysis, from the development of the basic language to the collection of algebraic results needed for efficient implementation, with detailed practical examples. The book covers: The importance of partial prior specifications for complex problems where it is difficult to supply a meaningful full prior probability specification. Simple ways to use partial prior specifications to adjust beliefs, given observations. Interpretative and diagnostic tools to display the implications of collections of belief statements, and to make stringent comparisons between expected and actual observations. General approaches to statistical modelling based upon partial exchangeability judgements. Bayes linear graphical models to represent and display partial belief specifications, organize computations, and display the results of analyses. Bayes Linear Statistics is essential reading for all statisticians concerned with the theory and practice of Bayesian methods. There is an accompanying website hosting free software and guides to the calculations within the book.

Mathematical Methods of Statistics PMS 9

Author: Harald Cramér
Publisher: Princeton University Press
ISBN: 1400883865
Format: PDF, Mobi
Download Now
In this classic of statistical mathematical theory, Harald Cramér joins the two major lines of development in the field: while British and American statisticians were developing the science of statistical inference, French and Russian probabilitists transformed the classical calculus of probability into a rigorous and pure mathematical theory. The result of Cramér's work is a masterly exposition of the mathematical methods of modern statistics that set the standard that others have since sought to follow. For anyone with a working knowledge of undergraduate mathematics the book is self contained. The first part is an introduction to the fundamental concept of a distribution and of integration with respect to a distribution. The second part contains the general theory of random variables and probability distributions while the third is devoted to the theory of sampling, statistical estimation, and tests of significance.


Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120336763
Format: PDF
Download Now
This is a comprehensive exposition of survey sampling useful both to the students of statistics for the course on sample survey and to the survey statisticians and practitioners involved in consultancy services, marketing, opinion polls, and so on. The text offers updated review of difficult classical techniques of survey sampling, besides covering prediction-theoretic approach of survey sampling and nonsampling errors. NEW TO THIS EDITION Two new chapters—Nonparametric Methods of Variance Estimation (Chapter 19) and Analysis of Complex Surveys (Chapter 20)—have been added. These would greatly benefit the readers. KEY FEATURES  Covers concepts of unequal probability sampling.  Provides problems of making inference from finite population using tools of classical inference.  Describes nonsampling errors including Randomised Response Techniques.  Gives over 70 worked-out examples and more than 120 problems and solutions.  Supplies live data from India and Sweden—in examples and exercises. What the Reviewer says: This is a very comprehensive modern text on survey sampling with a strong slant towards theoretical results. The book is an excellent reference book and would be a good graduate level sampling text for a course with an emphasis on sampling theory. — JESSE C. ARNOLD, Virginia Polytechnic Institute and State University

Understanding Advanced Statistical Methods

Author: Peter Westfall
Publisher: CRC Press
ISBN: 1466512105
Format: PDF
Download Now
Providing a much-needed bridge between elementary statistics courses and advanced research methods courses, Understanding Advanced Statistical Methods helps students grasp the fundamental assumptions and machinery behind sophisticated statistical topics, such as logistic regression, maximum likelihood, bootstrapping, nonparametrics, and Bayesian methods. The book teaches students how to properly model, think critically, and design their own studies to avoid common errors. It leads them to think differently not only about math and statistics but also about general research and the scientific method. With a focus on statistical models as producers of data, the book enables students to more easily understand the machinery of advanced statistics. It also downplays the "population" interpretation of statistical models and presents Bayesian methods before frequentist ones. Requiring no prior calculus experience, the text employs a "just-in-time" approach that introduces mathematical topics, including calculus, where needed. Formulas throughout the text are used to explain why calculus and probability are essential in statistical modeling. The authors also intuitively explain the theory and logic behind real data analysis, incorporating a range of application examples from the social, economic, biological, medical, physical, and engineering sciences. Enabling your students to answer the why behind statistical methods, this text teaches them how to successfully draw conclusions when the premises are flawed. It empowers them to use advanced statistical methods with confidence and develop their own statistical recipes. Ancillary materials are available on the book’s website.

Statistical Methods for Organizational Research

Author: Chris Dewberry
Publisher: Psychology Press
ISBN: 041533425X
Format: PDF, ePub
Download Now
'Statistical Methods for Organizational Research' provides a theoretical and practical introduction to the subject for students, researchers and practitioners involved in quantitative research.

Statistical Models and Methods for Financial Markets

Author: Tze Leung Lai
Publisher: Springer Science & Business Media
ISBN: 0387778276
Format: PDF, Kindle
Download Now
The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.