Semiconductor Process Reliability in Practice

Author: Zhenghao Gan
Publisher: McGraw Hill Professional
ISBN: 007175427X
Format: PDF, Mobi
Download Now
Proven processes for ensuring semiconductor device reliability Co-written by experts in the field, Semiconductor Process Reliability in Practice contains detailed descriptions and analyses of reliability and qualification for semiconductor device manufacturing and discusses the underlying physics and theory. The book covers initial specification definition, test structure design, analysis of test structure data, and final qualification of the process. Real-world examples of test structure designs to qualify front-end-of-line devices and back-end-of-line interconnects are provided in this practical, comprehensive guide. Coverage includes: Basic device physics Process flow for MOS manufacturing Measurements useful for device reliability characterization Hot carrier injection Gate-oxide integrity (GOI) and time-dependent dielectric breakdown (TDDB) Negative bias temperature instability Plasma-induced damage Electrostatic discharge protection of integrated circuits Electromigration Stress migration Intermetal dielectric breakdown

Fundamentals of Semiconductor Manufacturing and Process Control

Author: Gary S. May
Publisher: John Wiley & Sons
ISBN: 0471790273
Format: PDF, ePub, Mobi
Download Now
A practical guide to semiconductor manufacturing from process control to yield modeling and experimental design Fundamentals of Semiconductor Manufacturing and Process Control covers all issues involved in manufacturing microelectronic devices and circuits, including fabrication sequences, process control, experimental design, process modeling, yield modeling, and CIM/CAM systems. Readers are introduced to both the theory and practice of all basic manufacturing concepts. Following an overview of manufacturing and technology, the text explores process monitoring methods, including those that focus on product wafers and those that focus on the equipment used to produce wafers. Next, the text sets forth some fundamentals of statistics and yield modeling, which set the foundation for a detailed discussion of how statistical process control is used to analyze quality and improve yields. The discussion of statistical experimental design offers readers a powerful approach for systematically varying controllable process conditions and determining their impact on output parameters that measure quality. The authors introduce process modeling concepts, including several advanced process control topics such as run-by-run, supervisory control, and process and equipment diagnosis. Critical coverage includes the following: * Combines process control and semiconductor manufacturing * Unique treatment of system and software technology and management of overall manufacturing systems * Chapters include case studies, sample problems, and suggested exercises * Instructor support includes electronic copies of the figures and an instructor's manual Graduate-level students and industrial practitioners will benefit from the detailed exami?nation of how electronic materials and supplies are converted into finished integrated circuits and electronic products in a high-volume manufacturing environment. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department. An Instructor Support FTP site is also available.

Reliability Wearout Mechanisms in Advanced CMOS Technologies

Author: Alvin W. Strong
Publisher: John Wiley & Sons
ISBN: 9780470455258
Format: PDF, Docs
Download Now
A comprehensive treatment of all aspects of CMOS reliability wearout mechanisms This book covers everything students and professionals need to know about CMOS reliability wearout mechanisms, from basic concepts to the tools necessary to conduct reliability tests and analyze the results. It is the first book of its kind to bring together the pertinent physics, equations, and procedures for CMOS technology reliability in one place. Divided into six relatively independent topics, the book covers: Introduction to Reliability Gate Dielectric Reliability Negative Bias Temperature Instability Hot Carrier Injection Electromigration Reliability Stress Voiding Chapters conclude with practical appendices that provide very basic experimental procedures for readers who are conducting reliability experiments for the first time. Reliability Wearout Mechanisms in Advanced CMOS Technologies is ideal for students and new engineers who are looking to gain a working understanding of CMOS technology reliability. It is also suitable as a professional reference for experienced circuit design engineers, device design engineers, and process engineers.

Electrostatic Discharge Protection

Author: Juin J. Liou
Publisher: CRC Press
ISBN: 1482255898
Format: PDF, Mobi
Download Now
Electrostatic discharge (ESD) is one of the most prevalent threats to electronic components. In an ESD event, a finite amount of charge is transferred from one object (i.e., human body) to another (i.e., microchip). This process can result in a very high current passing through the microchip within a very short period of time. Thus, more than 35 percent of single-event chip damages can be attributed to ESD events, and designing ESD structures to protect integrated circuits against the ESD stresses is a high priority in the semiconductor industry. Electrostatic Discharge Protection: Advances and Applications delivers timely coverage of component- and system-level ESD protection for semiconductor devices and integrated circuits. Bringing together contributions from internationally respected researchers and engineers with expertise in ESD design, optimization, modeling, simulation, and characterization, this book bridges the gap between theory and practice to offer valuable insight into the state of the art of ESD protection. Amply illustrated with tables, figures, and case studies, the text: Instills a deeper understanding of ESD events and ESD protection design principles Examines vital processes including Si CMOS, Si BCD, Si SOI, and GaN technologies Addresses important aspects pertinent to the modeling and simulation of ESD protection solutions Electrostatic Discharge Protection: Advances and Applications provides a single source for cutting-edge information vital to the research and development of effective, robust ESD protection solutions for semiconductor devices and integrated circuits.

Handbook of Semiconductor Manufacturing Technology

Author: Yoshio Nishi
Publisher: CRC Press
ISBN: 9780824787837
Format: PDF, Mobi
Download Now
The Handbook of Semiconductor Manufacturing Technology describes the individual processes and manufacturing control, support, and infrastructure technologies of silicon-based integrated-circuit manufacturing, many of which are also applicable for building devices on other semiconductor substrates. Discussing ion implantation, rapid thermal processing, photomask fabrication, chip testing, and plasma etching, the editors explore current and anticipated equipment, devices, materials, and practices of silicon-based manufacturing. The book includes a foreword by Jack S. Kilby, cowinner of the Nobel Prize in Physics 2000 "for his part in the invention of the integrated circuit."

Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

Author: Osamu Ueda
Publisher: Springer Science & Business Media
ISBN: 1461443377
Format: PDF, ePub
Download Now
Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and reliability, which allow accurate prediction of reliability as well as the design specifically for improved reliability. The Handbook emphasizes physical mechanisms rather than an electrical definition of reliability. Accelerated aging is useful only if the failure mechanism is known. The Handbook also focuses on voltage and current acceleration stress mechanisms.

Theory and Practice of Quality and Reliability Engineering in Asia Industry

Author: Cher Ming Tan
Publisher: Springer
ISBN: 9811032904
Format: PDF, ePub, Docs
Download Now
This book discusses the application of quality and reliability engineering in Asian industries, and offers information for multinational companies (MNC) looking to transfer some of their operation and manufacturing capabilities to Asia and at the same time maintain high levels of reliability and quality. It is also provides small and medium enterprises (SME) in Asia with insights into producing high-quality and reliable products. It mainly comprises peer-reviewed papers that were presented at the Asian Network for Quality (ANQ) Congress 2014 held in Singapore (August, 2014), which provides a platform for companies, especially those within Asia where rapid changes and growth in manufacturing are taking place, to present their quality and reliability practices. The book presents practical demonstrations of how quality and reliability methodologies can be modified for the unique Asian market, and as such is a valuable resource for students, academics, professionals and practitioners in the field of quality and reliability.

Semiconductor Memories

Author: Ashok K. Sharma
Publisher: Wiley-IEEE Press
ISBN: 9780780310001
Format: PDF, Docs
Download Now
Semiconductor Memories provides in-depth coverage in the areas of design for testing, fault tolerance, failure modes and mechanisms, and screening and qualification methods including. * Memory cell structures and fabrication technologies. * Application-specific memories and architectures. * Memory design, fault modeling and test algorithms, limitations, and trade-offs. * Space environment, radiation hardening process and design techniques, and radiation testing. * Memory stacks and multichip modules for gigabyte storage.

Design for Reliability

Author: Dana Crowe
Publisher: CRC Press
ISBN: 1351836080
Format: PDF, Kindle
Download Now
Today's marketplace demands product reliability. At the same time, it places ever-increasing demands on products that push the limits of their performance and their functional life, and it does so with the expectation of lower per-unit product costs. To meet these demands, product design now requires a focused, streamlined, concurrent engineering process that will produce a product at the lowest possible cost in the least amount of time. Design for Reliability provides a systematic approach to the design process that is sharply focused on reliability and firmly based on the physics of failure. It imparts an understanding of how, why, and when to use the wide variety of reliability engineering tools available and offers fundamental insight into the total design cycle. Applicable from the idea phase of the product development cycle through product obsolescence, Design for Reliability (DfR) concepts integrated with reliability verification and analytical physics form a coherent stage gate/phase design process that helps ensure that a product will meet customers' reliability objectives. Whether you are a high-volume manufacturer of consumer items or a low volume producer of military commodities, your goal is the same: to bring a product to market using a process focused on designing out or mitigating potential failure modes prior to production release. Readers of Design for Reliability will learn to meet that goal and move beyond solidifying a basic offering to the marketplace to creating a true competitive advantage.

Hot Carrier Degradation in Semiconductor Devices

Author: Tibor Grasser
Publisher: Springer
ISBN: 3319089943
Format: PDF
Download Now
This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices. Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance.