Process Modeling and Simulation for Chemical Engineers

Author: Simant R. Upreti
Publisher: John Wiley & Sons
ISBN: 1118914686
Format: PDF, ePub, Mobi
Download Now
This book provides a rigorous treatment of the fundamental concepts and techniques involved in process modeling and simulation. The book allows the reader to: (i) Get a solid grasp of “under-the-hood” mathematical results (ii) Develop models of sophisticated processes (iii) Transform models to different geometries and domains as appropriate (iv) Utilize various model simplification techniques (v) Learn simple and effective computational methods for model simulation (vi) Intensify the effectiveness of their research Modeling and Simulation for Chemical Engineers: Theory and Practice begins with an introduction to the terminology of process modeling and simulation. Chapters 2 and 3 cover fundamental and constitutive relations, while Chapter 4 on model formulation builds on these relations. Chapters 5 and 6 introduce the advanced techniques of model transformation and simplification. Chapter 7 deals with model simulation, and the final chapter reviews important mathematical concepts. Presented in a methodical, systematic way, this book is suitable as a self-study guide or as a graduate reference, and includes examples, schematics and diagrams to enrich understanding. End of chapter problems with solutions and computer software available online at www.wiley.com/go/upreti/pms_for_chemical_engineers are designed to further stimulate readers to apply the newly learned concepts.

Process Modeling and Simulation for Chemical Engineers

Author: Simant R. Upreti
Publisher: John Wiley & Sons
ISBN: 111891466X
Format: PDF, ePub, Docs
Download Now
This book provides a rigorous treatment of the fundamental concepts and techniques involved in process modeling and simulation. The book allows the reader to: (i) Get a solid grasp of “under-the-hood” mathematical results (ii) Develop models of sophisticated processes (iii) Transform models to different geometries and domains as appropriate (iv) Utilize various model simplification techniques (v) Learn simple and effective computational methods for model simulation (vi) Intensify the effectiveness of their research Modeling and Simulation for Chemical Engineers: Theory and Practice begins with an introduction to the terminology of process modeling and simulation. Chapters 2 and 3 cover fundamental and constitutive relations, while Chapter 4 on model formulation builds on these relations. Chapters 5 and 6 introduce the advanced techniques of model transformation and simplification. Chapter 7 deals with model simulation, and the final chapter reviews important mathematical concepts. Presented in a methodical, systematic way, this book is suitable as a self-study guide or as a graduate reference, and includes examples, schematics and diagrams to enrich understanding. End of chapter problems (with solutions and computer software available online) are designed to further stimulate readers to apply the newly-learned concepts. End of chapter problems (with solutions and computer software available online www.wiley.com/go/upreti/pms_for_chemical_engineers) are designed to further stimulate readers to apply the newly learned concepts.

Process Modelling and Simulation in Chemical Biochemical and Environmental Engineering

Author: Ashok Kumar Verma
Publisher: CRC Press
ISBN: 1482205920
Format: PDF, Docs
Download Now
The use of simulation plays a vital part in developing an integrated approach to process design. By helping save time and money before the actual trial of a concept, this practice can assist with troubleshooting, design, control, revamping, and more. Process Modelling and Simulation in Chemical, Biochemical and Environmental Engineering explores effective modeling and simulation approaches for solving equations. Using a systematic treatment of model development and simulation studies for chemical, biochemical, and environmental processes, this book explains the simplification of a complicated process at various levels with the help of a "model sketch." It introduces several types of models, examines how they are developed, and provides examples from a wide range of applications. This includes the simple models based on simple laws such as Fick’s law, models that consist of generalized equations such as equations of motion, discrete-event models and stochastic models (which consider at least one variable as a discrete variable), and models based on population balance. Divided into 11 chapters, this book: Presents a systematic approach of model development in view of the simulation need Includes modeling techniques to model hydrodynamics, mass and heat transfer, and reactors for single as well as multi-phase systems Provides stochastic and population balance models Covers the application and development of artificial neural network models and hybrid ANN models Highlights gradients based techniques as well as statistical techniques for model validation and sensitivity analysis Contains examples on development of analytical, stochastic, numerical, and ANN-based models and simulation studies using them Illustrates modeling concepts with a wide spectrum of classical as well as recent research papers Process Modelling and Simulation in Chemical, Biochemical and Environmental Engineering includes recent trends in modeling and simulation, e.g. artificial neural network (ANN)-based models, and hybrid models. It contains a chapter on flowsheeting and batch processes using commercial/open source software for simulation.

Process Modeling Simulation and Environmental Applications in Chemical Engineering

Author: Bharat A. Bhanvase
Publisher: Apple Academic Press
ISBN: 9781771883245
Format: PDF
Download Now
This book presents new and original research on various topics on chemical engineering and technology including modeling and simulation, material synthesis, wastewater treatment, analytical techniques, and microreactors. The research presented here can be applied to technology in food, paper and pulp, polymers, petrochemicals, surface coatings, oil technology aspects, among other uses. Topics include modeling and simulation of chemical processes, process integration and intensification, separation processes, advances in unit operations and processes, chemical reaction engineering, fuel and energy, advanced materials, CFD and transport processes, and wastewater treatment.

Chemical Engineering

Author: Tanase Gh. Dobre
Publisher: John Wiley & Sons
ISBN: 352761110X
Format: PDF, Docs
Download Now
A description of the use of computer aided modeling and simulation in the development, integration and optimization of industrial processes. The two authors elucidate the entire procedure step-by-step, from basic mathematical modeling to result interpretation and full-scale process performance analysis. They further demonstrate similitude comparisons of experimental results from different systems as a tool for broadening the applicability of the calculation methods. Throughout, the book adopts a very practical approach, addressing actual problems and projects likely to be encountered by the reader, as well as fundamentals and solution strategies for complex problems. It is thus equally useful for student and professional engineers and chemists involved in industrial process and production plant design, construction or upgrading.

CHEMICAL PROCESS MODELLING AND COMPUTER SIMULATION

Author: JANA, AMIYA K.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 9387472086
Format: PDF, Mobi
Download Now
This comprehensive and thoroughly revised text, now in its third edition, continues to present the fundamental concepts of how mathematical models of chemical processes are constructed and demonstrate their applications to the simulation of three of the very important chemical engineering systems: the chemical reactors, distillation systems and vaporizing processes. The book provides an integrated treatment of process description, mathematical modelling and dynamic simulation of realistic problems, using the robust process model approach and its simulation with efficient numerical techniques. Theoretical background materials on activity coefficient models, equation of state models, reaction kinetics, and numerical solution techniques—needed for the development and simulation of mathematical models—are also addressed in the book. The topics of discussion related to tanks, heat exchangers, chemical reactors (both continuous and batch), biochemical reactors (continuous and fed-batch), distillation columns (continuous and batch), equilibrium flash vaporizer, refinery debutanizer column, evaporator, and steam generator contain several worked-out examples and case studies to teach students how chemical processes are operated, characterized and monitored using computer programming. NEW TO THIS EDITION The inclusion of following three new chapters on: • Gas Absorption • Liquid–Liquid Extraction Column • Once-Through Steam Generator will further strengthen the text. This book is designed for senior level undergraduate and first-year postgraduate level courses in ‘Chemical Process Modelling and Simulation’. The book will also be useful for students of petrochemical engineering, biotechnology, and biochemical engineering. It can serve as a guide for research scientists and practising engineers as well.

Theoretical Chemical Engineering

Author: Christo Boyadjiev
Publisher: Springer Science & Business Media
ISBN: 9783642107788
Format: PDF, ePub
Download Now
The role of theory in science was formulated very brilliantly by Max Planck: Experimenters are the striking force of science. The experiment is a question which science puts to nature. The measurement is the registration of nature’s answer. But before the question is put to nature,it must be formulated. Before the measurement result is used,itmust be explained, i.e., the answer must be understood correctly. These two problems are obligations of the theoreticians. Chemical engineering is an experimental science, but theory permits us to formulate correct experimental conditions and to understand correctly the exp- imental results. The theoretical methods of chemical engineering for modeling and simulation of industrial processes are surveyed in this book. Theoretical chemical engineering solves the problems that spring up from the necessity for a quantitative description of the processes in the chemical industry. They are quite different at the different stages of the quantitative description, i.e., a wide circle of theoretical methods are required for their solutions. Modeling and simulation are a united approach to obtain a quantitative description of the processes and systems in chemical engineering and chemical technology, which is necessary to clarify the process mechanism or for optimal process design, process control, and plant renovation. Modeling is the creation of the mathematical model, i.e., construction of the mathematical description (on the basis of the process mechanism), calculation of the model parameters (using experimental data), and statistical analysis of the model adequacy.

Product and Process Modelling

Author: Ian T. Cameron
Publisher: Elsevier
ISBN: 0080932312
Format: PDF, ePub
Download Now
This book covers the area of product and process modelling via a case study approach. It addresses a wide range of modelling applications with emphasis on modelling methodology and the subsequent in-depth analysis of mathematical models to gain insight via structural aspects of the models. These approaches are put into the context of life cycle modelling, where multiscale and multiform modelling is increasingly prevalent in the 21st century. The book commences with a discussion of modern product and process modelling theory and practice followed by a series of case studies drawn from a variety of process industries. The book builds on the extensive modelling experience of the authors, who have developed models for both research and industrial purposes. It complements existing books by the authors in the modelling area. Those areas include the traditional petroleum and petrochemical industries to biotechnology applications, food, polymer and human health application areas. The book highlights to important nature of modern product and process modelling in the decision making processes across the life cycle. As such it provides an important resource for students, researchers and industrial practitioners. Ian Cameron is Professor in Chemical Engineering at the University of Queensland with teaching, research, and consulting activities in process systems engineering. He has a particular interest in process modelling, dynamic simulation, and the application of functional systems perspectives to risk management, having extensive industrial experience in these areas. He continues to work closely with industry and government on systems approaches to process and risk management issues. He received his BE from the University of New South Wales (Australia) and his PhD from imperial College London. He is a Fellow of IChemE. Rafiqul Gani is a Professor of Systems Design at the Department of Chemical and Biochemical Engineering, Technical University of Denmark, and the director of the Computer Aided Product-Process Engineering Center (CAPEC). His research interests include the development of computer-aided methods and tools for modelling, property estimation and process-product synthesis and design. He received his BSc from Bangladesh University of Engineering and Technology in 1975, and his MSc in 1976 and PhD in 1980 from Imperial College London. He is the editor-in-chief of Computers and Chemical Engineering journal and Fellow of IChemE as well as AIChE. Product and process modelling; a wide range of case studies are covered Structural analysis of model systems; insights into structure and solvability Analysis of future developments; potential directions and significant research and development problems to be addressed

Advanced Process Control and Simulation for Chemical Engineers

Author: Hossein Ghanadzadeh Gilani
Publisher: CRC Press
ISBN: 1466568887
Format: PDF, ePub, Mobi
Download Now
This book offers a modern view of process control in the context of today’s technology. It provides innovative chapters on the growth of educational, scientific, and industrial research among chemical engineers. It presents experimental data on thermodynamics and provides a broad understanding of the main computational techniques used for chemical processing. Readers will gain an understanding of the areas of process control that all chemical engineers need to know. The information is presented in a concise and readable format. The information covers the basics and also provides unique topics, such as using a unified approach to model representations, statistical quality control, and model-based control. The methods presented have been successfully applied in industry to solve real problems. Designed as an advanced research guide in process dynamics and control, the book will be useful in chemical engineering courses as well as for the teaching of mechanical, nuclear, industrial, and metallurgical engineering.