Jet Propulsion

Author: Nicholas Cumpsty
Publisher: Cambridge University Press
ISBN: 1316432637
Format: PDF
Download Now
Now in its third edition, Jet Propulsion offers a self-contained introduction to the aerodynamic and thermodynamic design of modern civil and military jet engine design. Through two-engine design projects for a large passenger and a new fighter aircraft, the text explains modern engine design. Individual sections cover aircraft requirements, aerodynamics, principles of gas turbines and jet engines, elementary compressible fluid mechanics, bypass ratio selection, scaling and dimensional analysis, turbine and compressor design and characteristics, design optimization, and off-design performance. The civil aircraft, which formed the core of Part I in the previous editions, has now been in service for several years as the Airbus A380. Attention in the aircraft industry has now shifted to two-engine aircraft with a greater emphasis on reduction of fuel burn, so the model created for Part I in this edition is the new efficient aircraft, a twin aimed at high efficiency.

Jet Propulsion

Author: Nicholas Cumpsty
Publisher: Cambridge University Press
ISBN: 1139936123
Format: PDF, Docs
Download Now
This is the second edition of Cumpsty's excellent self-contained introduction to the aerodynamic and thermodynamic design of modern civil and military jet engines. Through two engine design projects, first for a new large passenger aircraft, and second for a new fighter aircraft, the text introduces, illustrates and explains the important facets of modern engine design. Individual sections cover aircraft requirements and aerodynamics, principles of gas turbines and jet engines, elementary compressible fluid mechanics, bypass ratio selection, scaling and dimensional analysis, turbine and compressor design and characteristics, design optimization, and off-design performance. The book emphasises principles and ideas, with simplification and approximation used where this helps understanding. This edition has been thoroughly updated and revised, and includes a new appendix on noise control and an expanded treatment of combustion emissions. Suitable for student courses in aircraft propulsion, but also an invaluable reference for engineers in the engine and airframe industry.

Jet Propulsion

Author: N. A. Cumpsty
Publisher: Cambridge University Press
ISBN: 9780521541442
Format: PDF, ePub
Download Now
Updated and revised edition of Cumpsty's excellent introduction to jet engines now includes noise control and emissions.

Jet Propulsion

Author: N. A. Cumpsty
Publisher: Cambridge University Press
ISBN: 9780521541442
Format: PDF, ePub, Mobi
Download Now
Updated and revised edition of Cumpsty's excellent introduction to jet engines now includes noise control and emissions.

A History of Jet Propulsion Including Rockets

Author: Raymond Friedman
Publisher: Xlibris Corporation
ISBN: 1450065910
Format: PDF, Kindle
Download Now
Both Jet-engine propelled aircraft and long-range rockets were first successfully flown during World War II. This led 10 rapid post-war improvements in both, and within two decades we had supersonic airplanes, communication satellites, and trips to the moon. Unmanned probes to Mars and the outer planets followed, as well as the International Space Station. The technology behind these advances is described, along with short biographies of key pioneers. Problems at high Mach numbers are reviewed. Possible future developments are discussed. Mora technical details, including mathematics, are in an appendix.

Aircraft Propulsion and Gas Turbine Engines

Author: Ahmed F. El-Sayed
Publisher: CRC Press
ISBN: 1420008773
Format: PDF, Kindle
Download Now
The escalating use of aircraft in the 21st century demands a thorough understanding of engine propulsion concepts, including the performance of aero engines. Among other critical activities,gas turbines play an extensive role in electric power generation, and marine propulsion for naval vessels and cargo ships. In the most exhaustive volume to date, this text examines the foundation of aircraft propulsion: aerodynamics interwoven with thermodynamics, heat transfer, and mechanical design. With a finely focused approach, the author devotes each chapter to a particular engine type, such as ramjet and pulsejet, turbojet, and turbofan. Supported by actual case studies, he illustrates engine performance under various operating conditions. Part I discusses the history, classifications, and performance of air breathing engines. Beginning with Leonardo and continuing on to the emergence of the jet age and beyond, this section chronicles inventions up through the 20th century. It then moves into a detailed discussion of different engine types, including pulsejet, ramjet, single- and multi-spool turbojet, and turbofan in both subsonic and supersonic applications. The author discusses Vertical Take Off and Landing aircraft, and provides a comprehensive examination of hypersonic scramjet and turbo ramjet engines. He also analyzes the different types of industrial gas turbines having single-and multi-spool with intercoolers, regenerators, and reheaters. Part II investigates the design of rotating compressors and turbines, and non-rotating components, intakes, combustion chambers, and nozzles for all modern jet propulsion and gas turbine engine systems, along with their performance. Every chapter concludes with illustrative examples followed by a problems section; for greater clarity, some provide a listing of important mathematical relations.

Fundamentals of Jet Propulsion with Applications

Author: Ronald D. Flack
Publisher: Cambridge University Press
ISBN: 1107393884
Format: PDF, Docs
Download Now
This introductory 2005 text on air-breathing jet propulsion focuses on the basic operating principles of jet engines and gas turbines. Previous coursework in fluid mechanics and thermodynamics is elucidated and applied to help the student understand and predict the characteristics of engine components and various types of engines and power gas turbines. Numerous examples help the reader appreciate the methods and differing, representative physical parameters. A capstone chapter integrates the text material into a portion of the book devoted to system matching and analysis so that engine performance can be predicted for both on- and off-design conditions. The book is designed for advanced undergraduate and first-year graduate students in aerospace and mechanical engineering. A basic understanding of fluid dynamics and thermodynamics is presumed. Although aircraft propulsion is the focus, the material can also be used to study ground- and marine-based gas turbines and turbomachinery and some advanced topics in compressors and turbines.

Advanced Aircraft Flight Performance

Author: Antonio Filippone
Publisher: Cambridge University Press
ISBN: 113978966X
Format: PDF, ePub
Download Now
This book discusses aircraft flight performance, focusing on commercial aircraft but also considering examples of high-performance military aircraft. The framework is a multidisciplinary engineering analysis, fully supported by flight simulation, with software validation at several levels. The book covers topics such as geometrical configurations, configuration aerodynamics and determination of aerodynamic derivatives, weight engineering, propulsion systems (gas turbine engines and propellers), aircraft trim, flight envelopes, mission analysis, trajectory optimisation, aircraft noise, noise trajectories and analysis of environmental performance. A unique feature of this book is the discussion and analysis of the environmental performance of the aircraft, focusing on topics such as aircraft noise and carbon dioxide emissions.

Gas Turbine Emissions

Author: Tim C. Lieuwen
Publisher: Cambridge University Press
ISBN: 052176405X
Format: PDF, Kindle
Download Now
The development of clean, sustainable energy systems is one of the preeminent issues of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage, and gas turbines will continue to be important combustion-based energy conversion devices for many decades to come, used for aircraft propulsion, ground-based power generation, and mechanical-drive applications. This book compiles the key scientific and technological knowledge associated with gas turbine emissions into a single authoritative source. The book has three sections: the first section reviews major issues with gas turbine combustion, including design approaches and constraints, within the context of emissions. The second section addresses fundamental issues associated with pollutant formation, modeling, and prediction. The third section features case studies from manufacturers and technology developers, emphasizing the system-level and practical issues that must be addressed in developing different types of gas turbines that emit pollutants at acceptable levels.