Methods of Modern Mathematical Physics Functional analysis

Author: Michael Reed
Publisher: Gulf Professional Publishing
ISBN: 0125850506
Format: PDF, ePub
Download Now
This book is the first of a multivolume series devoted to an exposition of functional analysis methods in modern mathematical physics. It describes the fundamental principles of functional analysis and is essentially self-contained, although there are occasional references to later volumes. We have included a few applications when we thought that they would provide motivation for the reader. Later volumes describe various advanced topics in functional analysis and give numerous applications in classical physics, modern physics, and partial differential equations.

I Functional Analysis

Author: Michael Reed
Publisher: Academic Press
ISBN: 0080570488
Format: PDF, ePub, Mobi
Download Now
This book is the first of a multivolume series devoted to an exposition of functional analysis methods in modern mathematical physics. It describes the fundamental principles of functional analysis and is essentially self-contained, although there are occasional references to later volumes. We have included a few applications when we thought that they would provide motivation for the reader. Later volumes describe various advanced topics in functional analysis and give numerous applications in classical physics, modern physics, and partial differential equations.

Methods of Modern Mathematical Physics

Author: Michael Reed
Publisher: Elsevier
ISBN: 0323155006
Format: PDF
Download Now
Methods of Modern Mathematical Physics, Volume I: Functional Analysis discusses the fundamental principles of functional analysis in modern mathematical physics. This book also analyzes the influence of mathematics on physics, such as the Newtonian mechanics used to interpret all physical phenomena. Organized into eight chapters, this volume starts with an overview of the functional analysis in the study of several concrete models. This book then discusses how to generalize the Lebesgue integral to work with functions on the real line and with Borel sets. This text also explores the properties of finite-dimensional vector spaces. Other chapters discuss the normed linear spaces, which have the property of being complete. This monograph further examines the general class of topologized vector spaces and the spaces of distributions that arise in a wide variety of physical problems and functional situations. This book is a valuable resource for mathematicians and physicists. Students and researchers in the field of geometry will also find this book extremely useful.

Applied Functional Analysis

Author: D.H. Griffel
Publisher: Courier Corporation
ISBN: 0486141322
Format: PDF
Download Now
This introductory text examines applications of functional analysis to mechanics, fluid mechanics, diffusive growth, and approximation. Covers distribution theory, Banach spaces, Hilbert space, spectral theory, Frechet calculus, Sobolev spaces, more. 1985 edition.

Analysis

Author: Elliott H. Lieb
Publisher: American Mathematical Soc.
ISBN: 0821827839
Format: PDF, Docs
Download Now
This is an excellent textbook on analysis and it has several unique features: Proofs of heat kernel estimates, the Nash inequality and the logarithmic Sobolev inequality are topics that are seldom treated on the level of a textbook. Best constants in several inequalities, such as Young's inequality and the logarithmic Sobolev inequality, are also included. A thorough treatment of rearrangement inequalities and competing symmetries appears in book form for the first time. There is an extensive treatment of potential theory and its applications to quantum mechanics, which, again, is unique at this level. Uniform convexity of $L^p$ space is treated very carefully. The presentation of this important subject is highly unusual for a textbook. All the proofs provide deep insights into the theorems. This book sets a new standard for a graduate textbook in analysis. --Shing-Tung Yau, Harvard University For some number of years, Rudin's ``Real and Complex'', and a few other analysis books, served as the canonical choice for the book to use, and to teach from, in a first year grad analysis course. Lieb-Loss offers a refreshing alternative: It begins with a down-to-earth intro to measure theory, $L^p$ and all that ... It aims at a wide range of essential applications, such as the Fourier transform, and series, inequalities, distributions, and Sobolev spaces--PDE, potential theory, calculus of variations, and math physics (Schrodinger's equation, the hydrogen atom, Thomas-Fermi theory ... to mention a few). The book should work equally well in a one-, or in a two-semester course. The first half of the book covers the basics, and the rest will be great for students to have, regardless of whether or not it gets to be included in a course. --Palle E. T. Jorgensen, University of Iowa

Mathematical Physics

Author: Sadri Hassani
Publisher: Springer Science & Business Media
ISBN: 3319011952
Format: PDF, ePub, Docs
Download Now
The goal of this book is to expose the reader to the indispensable role that mathematics plays in modern physics. Starting with the notion of vector spaces, the first half of the book develops topics as diverse as algebras, classical orthogonal polynomials, Fourier analysis, complex analysis, differential and integral equations, operator theory, and multi-dimensional Green's functions. The second half of the book introduces groups, manifolds, Lie groups and their representations, Clifford algebras and their representations, and fibre bundles and their applications to differential geometry and gauge theories. This second edition is a substantial revision with a complete rewriting of many chapters and the addition of new ones, including chapters on algebras, representation of Clifford algebras, fibre bundles, and gauge theories. The spirit of the first edition, namely the balance between rigour and physical application, has been maintained, as is the abundance of historical notes and worked out examples that demonstrate the "unreasonable effectiveness of mathematics" in modern physics.

A first course in functional analysis

Author: S. David Promislow
Publisher:
ISBN: 9780470146194
Format: PDF, ePub
Download Now
A concise introduction to the major concepts of functional analysis Requiring only a preliminary knowledge of elementary linear algebra and real analysis, A First Course in Functional Analysis provides an introduction to the basic principles and practical applications of functional analysis. Key concepts are illustrated in a straightforward manner, which facilitates a complete and fundamental understanding of the topic. This book is based on the author's own class-tested material and uses clear language to explain the major concepts of functional analysis, including Banach spaces, Hilbert spaces, topological vector spaces, as well as bounded linear functionals and operators. As opposed to simply presenting the proofs, the author outlines the logic behind the steps, demonstrates the development of arguments, and discusses how the concepts are connected to one another. Each chapter concludes with exercises ranging in difficulty, giving readers the opportunity to reinforce their comprehension of the discussed methods. An appendix provides a thorough introduction to measure and integration theory, and additional appendices address the background material on topics such as Zorn's lemma, the Stone-Weierstrass theorem, Tychonoff's theorem on product spaces, and the upper and lower limit points of sequences. References to various applications of functional analysis are also included throughout the book. A First Course in Functional Analysis is an ideal text for upper-undergraduate and graduate-level courses in pure and applied mathematics, statistics, and engineering. It also serves as a valuable reference for practitioners across various disciplines, including the physical sciences, economics, and finance, who would like to expand their knowledge of functional analysis.

Functional Analysis for Physics and Engineering

Author: Hiroyuki Shima
Publisher: CRC Press
ISBN: 1482223031
Format: PDF, ePub
Download Now
This book provides an introduction to functional analysis for non-experts in mathematics. As such, it is distinct from most other books on the subject that are intended for mathematicians. Concepts are explained concisely with visual materials, making it accessible for those unfamiliar with graduate-level mathematics. Topics include topology, vector spaces, tensor spaces, Lebesgue integrals, and operators, to name a few. Two central issues—the theory of Hilbert space and the operator theory—and how they relate to quantum physics are covered extensively. Each chapter explains, concisely, the purpose of the specific topic and the benefit of understanding it. Researchers and graduate students in physics, mechanical engineering, and information science will benefit from this view of functional analysis.