Energy Optimization in Process Systems and Fuel Cells

Author: Stanislaw Sieniutycz
Publisher: Elsevier
ISBN: 0081025580
Format: PDF, Docs
Download Now
Energy Optimization in Process Systems and Fuel Cells, Third Edition covers the optimization and integration of energy systems, with a particular focus on fuel cell technology. With rising energy prices, imminent energy shortages, and the increasing environmental impacts of energy production, energy optimization and systems integration is critically important. The book applies thermodynamics, kinetics and economics to study the effect of equipment size, environmental parameters, and economic factors on optimal power production and heat integration. Author Stanislaw Sieniutycz, highly recognized for his expertise and teaching, shows how costs can be substantially reduced, particularly in utilities common in the chemical industry. This third edition contains substantial revisions and modifications, with new material on catalytic reactors, sorption systems, sorbent or catalyst regenerators, dryers, and more. Presents a unified approach to the optimization and integration of energy systems Includes a large number of examples treating dynamical systems Provides exposition showing the power of thermodynamics Contains a large number of maximum power analyses and their extensions

Optimization of Energy Systems

Author: Ibrahim Dincer
Publisher: John Wiley & Sons
ISBN: 111889443X
Format: PDF
Download Now
An essential resource for optimizing energy systems to enhance design capability, performance and sustainability Optimization of Energy Systems comprehensively describes the thermodynamic modelling, analysis and optimization of numerous types of energy systems in various applications. It provides a new understanding of the system and the process of defining proper objective functions for determination of the most suitable design parameters for achieving enhanced efficiency, cost effectiveness and sustainability. Beginning with a general summary of thermodynamics, optimization techniques and optimization methods for thermal components, the book goes on to describe how to determine the most appropriate design parameters for more complex energy systems using various optimization methods. The results of each chapter provide potential tools for design, analysis, performance improvement, and greenhouse gas emissions reduction. Key features: Comprehensive coverage of the modelling, analysis and optimization of many energy systems for a variety of applications. Examples, practical applications and case studies to put theory into practice. Study problems at the end of each chapter that foster critical thinking and skill development. Written in an easy-to-follow style, starting with simple systems and moving to advanced energy systems and their complexities. A unique resource for understanding cutting-edge research in the thermodynamic analysis and optimization of a wide range of energy systems, Optimization of Energy Systems is suitable for graduate and senior undergraduate students, researchers, engineers, practitioners, and scientists in the area of energy systems.

Optimizing Thermal Chemical and Environmental Systems

Author: Stanislaw Sieniutycz
Publisher: Elsevier
ISBN: 0128135832
Format: PDF, Kindle
Download Now
Optimizing Thermal, Chemical and Environmental Systems treats the evaluation of power or energy limits for processes that arise in various thermal, chemical and environmental engineering systems (heat and mass exchangers, power converters, recovery units, solar collectors, mixture separators, chemical reactors, catalyst regenerators, etc.). The book is an indispensable source for researchers and students, providing the necessary information on what has been achieved to date in the field of process optimization, new research problems, and what kind of further studies should be developed within quite specialized optimizations. Summarizes recent achievements of advanced optimization techniques Links exergy definitions in reversible systems with classical problems of extremum work Includes practical problems and illustrative examples to clarify applications Provides a unified description of classical and work-assisted heat and mass exchangers Written by a first-class expert in the field of advanced methods in thermodynamics

Exergy

Author: Ibrahim Dincer
Publisher: Newnes
ISBN: 0080970907
Format: PDF
Download Now
This book deals with exergy and its applications to various energy systems and applications as a potential tool for design, analysis and optimization, and its role in minimizing and/or eliminating environmental impacts and providing sustainable development. In this regard, several key topics ranging from the basics of the thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications are covered as outlined in the contents. Offers comprehensive coverage of exergy and its applications, along with the most up-to-date information in the area with recent developments Connects exergy with three essential areas in terms of energy, environment and sustainable development Provides a number of illustrative examples, practical applications, and case studies Written in an easy-to-follow style, starting from the basics to advanced systems

Molten Carbonate Fuel Cells

Author: Kai Sundmacher
Publisher: John Wiley & Sons
ISBN: 3527611339
Format: PDF
Download Now
Adopting a unique, integrated engineering approach, this text simultaneously covers all aspects of design and operation, process analysis, optimization, monitoring and control. It clearly presents the multiple advantages of molten carbonate fuel cells for the efficient conversion of energy, and also includes recent developments in this innovative technology. The whole is rounded off by an appendix featuring benchmark problems with equations and parameters. Vital reading for process, chemical and power engineers, as well as those working in power technology, chemists and electrochemists, materials scientists, and energy-supplying companies.

10th International Symposium on Process Systems Engineering PSE2009

Author: Rita Maria de Brito Alves
Publisher: Elsevier
ISBN: 9780444534736
Format: PDF, Docs
Download Now
This book contains the proceedings of the 10e of a series of international symposia on process systems engineering (PSE) initiated in 1982. The special focus of PSE09 is how PSE methods can support sustainable resource systems and emerging technologies in the areas of green engineering. * Contains fully searchable CD of all printed contributions * Focus on sustainable green engineering * 9 Plenary papers, 21 Keynote lectures by leading experts in the field

Control of Fuel Cell Power Systems

Author: Jay T. Pukrushpan
Publisher: Springer Science & Business Media
ISBN: 9781852338169
Format: PDF, Docs
Download Now
The problem of greenhouse gas (particularly carbon dioxide) release during power generation in fixed and mobile systems is widely acknowledged. Fuel cells are electrochemical devices offering clean and efficient energy production by the direct conversion of gaseous fuel into electricity. As such, they are under active study for commercial stationary power generation, residential applications and in transportation. The control of fuel cell systems under a variety of environmental conditions and over a wide operating range is a crucial factor in making them viable for extensive use in every-day technology. In Control of Fuel Cell Power Systems the application of fuel cells in automotive powertrains is emphasized because of the significance of the contribution to global CO2 emissions made by ground vehicle propulsion and because of the challenge presented by the accompanying control problems. The authors’ comprehensive control-oriented approach provides: • An overview of the underlying physical principles and the main control objectives and difficulties associated with the implementation of fuel cell systems. • System-level dynamic models derived from the physical principles of the processes involved. • Formulation, in-depth analysis and detailed control design for two critical control problems, namely, the control of the cathode oxygen supply for a high-pressure direct hydrogen fuel cell system and control of the anode hydrogen supply from a natural gas fuel processor system. • Multivariable controllers that attenuate restraints resulting from lack of sensor fidelity or actuator authority. • Real-time observers for stack variables that confer redundancy in fault detection processes. • Examples of the assistance of control analysis in fuel cell redesign and performance improvement. • Downloadable SIMULINK® model of a fuel cell for immediate use supplemented by sample MATLAB® files with which to run it and reproduce some of the book plots. Primarily intended for researchers and students with a control background looking to expand their knowledge of fuel cell technology, Control of Fuel Cell Power Systems will also appeal to practicing fuel cell engineers through the simplicity of its models and the application of control algorithms in concrete case studies. The thorough coverage of control design will be of benefit to scientists dealing with the electrochemical, materials and fluid-dynamic aspects of fuel cells. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Advances in Energy Systems Engineering

Author: Georgios M. Kopanos
Publisher: Springer
ISBN: 3319428039
Format: PDF, ePub, Mobi
Download Now
This book provides a scientific framework for integrated solutions to complex energy problems. It adopts a holistic, systems-based approach to demonstrate the potential of an energy systems engineering approach to systematically quantify different options at various levels of complexity (technology, plant, energy supply chain, mega-system). Utilizing modeling, simulation and optimization-based frameworks, along with a number of real-life applications, it focuses on advanced energy systems including energy supply chains, integrated biorefineries, energy planning and scheduling approaches and urban energy systems. Featuring contributions from leading researchers in the field, this work is useful for academics, researchers, industry practitioners in energy systems engineering, and all those who are involved in model-based energy systems.

23rd European Symposium on Computer Aided Process Engineering

Author:
Publisher: Elsevier
ISBN: 0444632417
Format: PDF, ePub, Mobi
Download Now
Computer-aided process engineering (CAPE) plays a key design and operations role in the process industries, from the molecular scale through managing complex manufacturing sites. The research interests cover a wide range of interdisciplinary problems related to the current needs of society and industry. ESCAPE 23 brings together researchers and practitioners of computer-aided process engineering interested in modeling, simulation and optimization, synthesis and design, automation and control, and education. The proceedings present and evaluate emerging as well as established research methods and concepts, as well as industrial case studies. Contributions from the international community using computer-based methods in process engineering Reviews the latest developments in process systems engineering Emphasis on industrial and societal challenges