Advanced Mathematics for FPGA and DSP Programmers

Author: Tim Cooper
Publisher:
ISBN: 9780979058110
Format: PDF, Docs
Download Now
Advanced Mathematics for FPGA and DSP Programmers covers the mathematical concepts involved in FPGA and DSP programing that can make or break a project. Coverage includes Numbers and Representation, Signals and Noise, Complex Arithmetic, Statistics, Correlation and Convolution, Frequencies, The FFT, Filters, Decimating and Interpolating, Practical Applications, Dot Product Applications, and a glossary of DSP arithmetical terms. About the Author Tim Cooper has been developing real-time embedded and signal processing software for commercial and military applications for over 30 years. Mr. Cooper has authored numerous device drivers, board support packages, and signal processing applications for real-time-operating systems. Mr. Cooper has also authored high-performance signal processing libraries based on SIMD architectures. Other signal processing experience includes MATLAB algorithm development and verification, and working with FPGA engineers to implement and validate signal processing algorithms in VHDL. Much of Mr. Cooper's experience involves software development for systems having hard real-time requirements and deeply embedded processors, where software reliability, performance, and latency are significant cost drivers. Such systems typically require innovative embedded instrumentation that collects performance data without competing for processing resources. Mr. Cooper holds a Bachelor of Science in Computer Sciences and a Master's degree in Computer and Electronics Engineering from George Mason University.

Design for Embedded Image Processing on FPGAs

Author: Donald G. Bailey
Publisher: John Wiley & Sons
ISBN: 0470828528
Format: PDF, ePub
Download Now
Dr Donald Bailey starts with introductory material considering the problem of embedded image processing, and how some of the issues may be solved using parallel hardware solutions. Field programmable gate arrays (FPGAs) are introduced as a technology that provides flexible, fine-grained hardware that can readily exploit parallelism within many image processing algorithms. A brief review of FPGA programming languages provides the link between a software mindset normally associated with image processing algorithms, and the hardware mindset required for efficient utilization of a parallel hardware design. The design process for implementing an image processing algorithm on an FPGA is compared with that for a conventional software implementation, with the key differences highlighted. Particular attention is given to the techniques for mapping an algorithm onto an FPGA implementation, considering timing, memory bandwidth and resource constraints, and efficient hardware computational techniques. Extensive coverage is given of a range of low and intermediate level image processing operations, discussing efficient implementations and how these may vary according to the application. The techniques are illustrated with several example applications or case studies from projects or applications he has been involved with. Issues such as interfacing between the FPGA and peripheral devices are covered briefly, as is designing the system in such a way that it can be more readily debugged and tuned. Provides a bridge between algorithms and hardware Demonstrates how to avoid many of the potential pitfalls Offers practical recommendations and solutions Illustrates several real-world applications and case studies Allows those with software backgrounds to understand efficient hardware implementation Design for Embedded Image Processing on FPGAs is ideal for researchers and engineers in the vision or image processing industry, who are looking at smart sensors, machine vision, and robotic vision, as well as FPGA developers and application engineers. The book can also be used by graduate students studying imaging systems, computer engineering, digital design, circuit design, or computer science. It can also be used as supplementary text for courses in advanced digital design, algorithm and hardware implementation, and digital signal processing and applications. Companion website for the book: www.wiley.com/go/bailey/fpga

Digital Signal Processing with Field Programmable Gate Arrays

Author: Uwe Meyer-Baese
Publisher: Springer Science & Business Media
ISBN: 3540726136
Format: PDF
Download Now
A practical and fascinating book on a topic at the forefront of communications technology. Field-Programmable Gate Arrays (FPGAs) are on the verge of revolutionizing digital signal processing. Novel FPGA families are replacing ASICs and PDSPs for front-end digital signal processing algorithms at an accelerating rate. The efficient implementation of these algorithms is the main goal of this book. It starts with an overview of today's FPGA technology, devices, and tools for designing state-of-the-art DSP systems. Each of the book’s chapter contains exercises. The VERILOG source code and a glossary are given in the appendices.

Synthesis of Arithmetic Circuits

Author: Jean-Pierre Deschamps
Publisher: John Wiley & Sons
ISBN: 0471741418
Format: PDF, Mobi
Download Now
A new approach to the study of arithmetic circuits In Synthesis of Arithmetic Circuits: FPGA, ASIC and Embedded Systems, the authors take a novel approach of presenting methods and examples for the synthesis of arithmetic circuits that better reflects the needs of today's computer system designers and engineers. Unlike other publications that limit discussion to arithmetic units for general-purpose computers, this text features a practical focus on embedded systems. Following an introductory chapter, the publication is divided into two parts. The first part, Mathematical Aspects and Algorithms, includes mathematical background, number representation, addition and subtraction, multiplication, division, other arithmetic operations, and operations in finite fields. The second part, Synthesis of Arithmetic Circuits, includes hardware platforms, general principles of synthesis, adders and subtractors, multipliers, dividers, and other arithmetic primitives. In addition, the publication distinguishes itself with: * A separate treatment of algorithms and circuits-a more useful presentation for both software and hardware implementations * Complete executable and synthesizable VHDL models available on the book's companion Web site, allowing readers to generate synthesizable descriptions * Proposed FPGA implementation examples, namely synthesizable low-level VHDL models for the Spartan II and Virtex families * Two chapters dedicated to finite field operations This publication is a must-have resource for students in computer science and embedded system designers, engineers, and researchers in the field of hardware and software computer system design and development. An Instructor Support FTP site is available from the Wiley editorial department.

Hardware Implementation of Finite Field Arithmetic

Author: Jean-Pierre Deschamps
Publisher: McGraw Hill Professional
ISBN: 0071545824
Format: PDF, ePub
Download Now
Implement Finite-Field Arithmetic in Specific Hardware (FPGA and ASIC) Master cutting-edge electronic circuit synthesis and design with help from this detailed guide. Hardware Implementation of Finite-Field Arithmetic describes algorithms and circuits for executing finite-field operations, including addition, subtraction, multiplication, squaring, exponentiation, and division. This comprehensive resource begins with an overview of mathematics, covering algebra, number theory, finite fields, and cryptography. The book then presents algorithms which can be executed and verified with actual input data. Logic schemes and VHDL models are described in such a way that the corresponding circuits can be easily simulated and synthesized. The book concludes with a real-world example of a finite-field application--elliptic-curve cryptography. This is an essential guide for hardware engineers involved in the development of embedded systems. Get detailed coverage of: Modulo m reduction Modulo m addition, subtraction, multiplication, and exponentiation Operations over GF(p) and GF(pm) Operations over the commutative ring Zp[x]/f(x) Operations over the binary field GF(2m) using normal, polynomial, dual, and triangular

FPGAs Instant Access

Author: Clive Maxfield
Publisher: Elsevier
ISBN: 9780080560113
Format: PDF, ePub, Docs
Download Now
FPGAs are central to electronic design! The engineers designing these devices are in need of essential information at a moment's notice. The Instant Access Series provides all the critical content that a computer design engineer needs in his or her daily work. This book provides an introduction to FPGAs as well as succinct overviews of fundamental concepts and basic programming. FPGAs are a customizable chip flexible enough to be deployed in a wide range of products and applications. There are several basic design flows detailed including ones based in C/C++, DSP, and HDL. This book is filled with images, figures, tables, and easy to find tips and tricks for the engineer that needs material fast to complete projects to deadline. Table of Contents CHAPTER 1 The Fundamentals CHAPTER 2 FPGA Architectures CHAPTER 3 Programming (Configuring) an FPGA CHAPTER 4 FPGA vs. ASIC Designs CHAPTER 5 “Traditional Design Flows CHAPTER 6 Other Design Flows CHAPTER 7 Using Design Tools CHAPTER 8 Choosing the Right Device *Tips and tricks feature that will help engineers get info fast and move on to the next issue *Easily searchable content complete with tabs, chapter table of contents, bulleted lists, and boxed features *Just the essentials, no need to page through material not needed for the current project

Digital Signal Processing 101

Author: Michael Parker
Publisher: Newnes
ISBN: 0128114541
Format: PDF, Docs
Download Now
Digital Signal Processing 101: Everything You Need to Know to Get Started provides a basic tutorial on digital signal processing (DSP). Beginning with discussions of numerical representation and complex numbers and exponentials, it goes on to explain difficult concepts such as sampling, aliasing, imaginary numbers, and frequency response. It does so using easy-to-understand examples with minimum mathematics. In addition, there is an overview of the DSP functions and implementation used in several DSP-intensive fields or applications, from error correction to CDMA mobile communication to airborne radar systems. This book has been updated to include the latest developments in Digital Signal Processing, and has eight new chapters on: Automotive Radar Signal Processing Space-Time Adaptive Processing Radar Field Orientated Motor Control Matrix Inversion algorithms GPUs for computing Machine Learning Entropy and Predictive Coding Video compression Features eight new chapters on Automotive Radar Signal Processing, Space-Time Adaptive Processing Radar, Field Orientated Motor Control, Matrix Inversion algorithms, GPUs for computing, Machine Learning, Entropy and Predictive Coding, and Video compression Provides clear examples and a non-mathematical approach to get you up to speed quickly Includes an overview of the DSP functions and implementation used in typical DSP-intensive applications, including error correction, CDMA mobile communication, and radar systems

Practical FPGA Programming in C

Author: David Pellerin
Publisher: Prentice Hall
ISBN: 9780131543188
Format: PDF, Mobi
Download Now
FPGA brings high performance applications to market quickly - this book covers the many emerging platforms in a proven, effective manner.

Embedded Systems Design with Platform FPGAs

Author: Ronald Sass
Publisher: Morgan Kaufmann
ISBN: 9780080921785
Format: PDF, ePub, Docs
Download Now
Embedded Systems Design with Platform FPGAs introduces professional engineers and students alike to system development using Platform FPGAs. The focus is on embedded systems but it also serves as a general guide to building custom computing systems. The text describes the fundamental technology in terms of hardware, software, and a set of principles to guide the development of Platform FPGA systems. The goal is to show how to systematically and creatively apply these principles to the construction of application-specific embedded system architectures. There is a strong focus on using free and open source software to increase productivity. Each chapter is organized into two parts. The white pages describe concepts, principles, and general knowledge. The gray pages provide a technical rendition of the main issues of the chapter and show the concepts applied in practice. This includes step-by-step details for a specific development board and tool chain so that the reader can carry out the same steps on their own. Rather than try to demonstrate the concepts on a broad set of tools and boards, the text uses a single set of tools (Xilinx Platform Studio, Linux, and GNU) throughout and uses a single developer board (Xilinx ML-510) for the examples. Explains how to use the Platform FPGA to meet complex design requirements and improve product performance Presents both fundamental concepts together with pragmatic, step-by-step instructions for building a system on a Platform FPGA Includes detailed case studies, extended real-world examples, and lab exercises

Advanced FPGA Design

Author: Steve Kilts
Publisher: John Wiley & Sons
ISBN: 9780470127889
Format: PDF, ePub, Mobi
Download Now
This book provides the advanced issues of FPGA design as the underlying theme of the work. In practice, an engineer typically needs to be mentored for several years before these principles are appropriately utilized. The topics that will be discussed in this book are essential to designing FPGA's beyond moderate complexity. The goal of the book is to present practical design techniques that are otherwise only available through mentorship and real-world experience.