A Numerical Primer for the Chemical Engineer

Author: Edwin Zondervan
Publisher: CRC Press
ISBN: 1482229447
Format: PDF, Mobi
Download Now
Solve Developed Models in a Numerical Fashion Designed as an introduction to numerical methods for students, A Numerical Primer for the Chemical Engineer explores the role of models in chemical engineering. Combining mathematical correctness (model verification) with numerical performance (model validation), this text concentrates on numerical methods and problem solving, rather than focusing on in-depth numerical analysis. It applies actual numerical solution strategies to formulated process models to help identify and solve chemical engineering problems. Describe Motions with Accuracy The book starts with a recap on linear algebra, and uses algorithms to solve linear equations, nonlinear equations, ordinary differential equations, and partial differential equations (PDEs). It includes an introductory chapter on MATLAB® basics, contains a chapter on the implementation of numerical methods in Excel, and even adopts MATLAB and Excel as the programming environments throughout the text. The material addresses implicit and explicit schemes, and explores finite difference and finite volume methods for solving transport PDEs. It covers the methods for error and computational stability, as well as curve fitting and optimization. It also contains a case study chapter with worked out examples to demonstrate the numerical techniques, and exercises at the end of each chapter that students can use to familiarize themselves with the numerical methods. A Numerical Primer for the Chemical Engineer lays down a foundation for numerical problem solving and sets up a basis for more in-depth modeling theory and applications. This text addresses the needs of senior undergraduates in chemical engineering, and students in applied chemistry and biochemical process engineering/food process engineering.

Chemical Engineering Primer with Computer Applications

Author: Hussein K. Abdel-Aal
Publisher: CRC Press
ISBN: 9781138434486
Format: PDF, ePub
Download Now
Taking a highly pragmatic approach to presenting the principles and applications of chemical engineering, this companion text for students and working professionals offers an easily accessible guide to solving problems using computers. The primer covers the core concepts of chemical engineering, from conservation laws all the way up to chemical kinetics, without heavy stress on theory and is designed to accompany traditional larger core texts. The book presents the basic principles and techniques of chemical engineering processes and helps readers identify typical problems and how to solve them. Focus is on the use of systematic algorithms that employ numerical methods to solve different chemical engineering problems by describing and transforming the information. Problems are assigned for each chapter, ranging from simple to difficult, allowing readers to gradually build their skills and tackle a broad range of problems. MATLAB and Excel are used to solve many examples and the more than 70 real examples throughout the book include computer or hand solutions, or in many cases both. The book also includes a variety of case studies to illustrate the concepts and a downloadable file containing fully worked solutions to the book�s problems on the publisher�s website. Introduces the reader to chemical engineering computation without the distractions caused by the contents found in many texts. Provides the principles underlying all of the major processes a chemical engineer may encounter as well as offers insight into their analysis, which is essential for design calculations. Shows how to solve chemical engineering problems using computers that require numerical methods using standard algorithms, such as MATLAB and Excel. Contains selective solved examples of many problems within the chemical process industry to demonstrate how to solve them using the techniq

Introduction to Chemical Engineering Analysis Using Mathematica

Author: Henry C. Foley
Publisher: Elsevier
ISBN: 0080534953
Format: PDF, Kindle
Download Now
This book provides an introduction to chemical engineering analysis- which reviews the processes and designs used to manufacture, use, and dispose of chemical products-and to Mathematica, one of the most powerful mathematical software tools available for symbolic, numerical, and graphical computing. Analysis and computation are explained simultaneously. The book covers the core concepts of chemical engineering, ranging from the conservation of mass to chemical kinetics. At the same time the text shows how to use the latest version of Mathematica, from the basics of writing a few lines of code through developing entire analysis programs.

Numerical Methods in Engineering with Python 3

Author: Jaan Kiusalaas
Publisher: Cambridge University Press
ISBN: 1107033853
Format: PDF, ePub, Mobi
Download Now
Provides an introduction to numerical methods for students in engineering. It uses Python 3, an easy-to-use, high-level programming language.

Artificial Intelligence in Chemical Engineering

Author: Thomas E. Quantrille
Publisher: Elsevier
ISBN: 0080571212
Format: PDF, Kindle
Download Now
Artificial intelligence (AI) is the part of computer science concerned with designing intelligent computer systems (systems that exhibit characteristics we associate with intelligence in human behavior). This book is the first published textbook of AI in chemical engineering, and provides broad and in-depth coverage of AI programming, AI principles, expert systems, and neural networks in chemical engineering. This book introduces the computational means and methodologies that are used to enable computers to perform intelligent engineering tasks. A key goal is to move beyond the principles of AI into its applications in chemical engineering. After reading this book, a chemical engineer will have a firm grounding in AI, know what chemical engineering applications of AI exist today, and understand the current challenges facing AI in engineering. Allows the reader to learn AI quickly using inexpensive personal computers Contains a large number of illustrative examples, simple exercises, and complex practice problems and solutions Includes a computer diskette for an illustrated case study Demonstrates an expert system for separation synthesis (EXSEP) Presents a detailed review of published literature on expert systems and neural networks in chemical engineering

Problem Solving in Chemical and Biochemical Engineering with POLYMATH Excel and MATLAB

Author: Michael B. Cutlip
Publisher: Prentice-Hall PTR
ISBN: 9780131482043
Format: PDF, ePub
Download Now
Problem Solving in Chemical and Biochemical Engineering with POLYMATH™, Excel, and MATLAB®, Second Edition , is a valuable resource and companion that integrates the use of numerical problem solving in the three most widely used software packages: POLYMATH, Microsoft Excel, and MATLAB. Recently developed POLYMATH capabilities allow the automatic creation of Excel spreadsheets and the generation of MATLAB code for problem solutions. Students and professional engineers will appreciate the ease with which problems can be entered into POLYMATH and then solved independently in all three software packages, while taking full advantage of the unique capabilities within each package. The book includes more than 170 problems requiring numerical solutions. This greatly expanded and revised second edition includes new chapters on getting started with and using Excel and MATLAB. It also places special emphasis on biochemical engineering with a major chapter on the subject and with the integration of biochemical problems throughout the book. General Topics and Subject Areas, Organized by Chapter Introduction to Problem Solving with Mathematical Software Packages Basic Principles and Calculations Regression and Correlation of Data Introduction to Problem Solving with Excel Introduction to Problem Solving with MATLAB Advanced Problem-Solving Techniques Thermodynamics Fluid Mechanics Heat Transfer Mass Transfer Chemical Reaction Engineering Phase Equilibrium and Distillation Process Dynamics and Control Biochemical Engineering Practical Aspects of Problem-Solving Capabilities Simultaneous Linear Equations Simultaneous Nonlinear Equations Linear, Multiple Linear, and Nonlinear Regressions with Statistical Analyses Partial Differential Equations (Using the Numerical Method of Lines) Curve Fitting by Polynomials with Statistical Analysis Simultaneous Ordinary Differential Equations (Including Problems Involving Stiff Systems, Differential-Algebraic Equations, and Parameter Estimation in Systems of Ordinary Differential Equations) The Book's Web Site (http://www.problemsolvingbook.com) Provides solved and partially solved problem files for all three software packages, plus additional materials Describes discounted purchase options for educational version of POLYMATH available to book purchasers Includes detailed, selected problem solutions in Maple™, Mathcad®, and Mathematica™

Practical Numerical Methods for Chemical Engineers

Author: Richard A. Davis
Publisher: CreateSpace
ISBN: 9781495409653
Format: PDF, ePub, Mobi
Download Now
This latest 3rd edition expands the breadth of Practical Numerical Methods with over 100 VBA macros for extending Excel's power for engineering and scientific analysis. Engineers and scientists will find the enhanced coverage of computational tools applicable to a variety of problems in their own disciplines. ** The selection of software reflects Excel's status as the de facto computational tool used by practicing engineers. Engineers & scientists should become proficient at extending Excel's capabilities with VBA programming to boost their worksheets with time saving enhancements and powerful numerical techniques. ** Topics include an introduction to modeling, documentation, Excel & VBA, root-finding for linear & nonlinear systems of equations, multivariate optimization, experimental uncertainty propagation & analysis, least-squares regression & model validation, interpolation, integration, and ordinary & partial differential equations. ** A companion web site has links to digital files for downloading up to 200 illustrations & examples & the refined PNM3Suite workbook with VBA user-defined functions, macros, & user forms for advanced numerical techniques. Practice problems are also available from the web site (https: //www.d.umn.edu/ rdavis/PNM/PNMExcelVBA3/). Example files & macros are ready to be modified by users for their own needs. ** Chapter 1 includes a brief introduction to chemical reaction engineering that provides some background needed for problems involving mass & energy balances with reactions. ** The next two chapters introduce frequently overlooked features of Excel and VBA for engineering programming to apply numerical methods in Excel, as well as document results. The remaining chapters present powerful numerical techniques using Excel & VBA, including: ** General Methods: Sub & User-defined Function Procedures, Pseudo-random Number Generation, Sorting, Formula Graphing & Evaluation, Random Sampling, User forms ** Linear Equations: Gaussian Elimination with Maximum Column Pivoting, Error Correction, Crout Reduction, Thomas algorithm for tri-diagonal & Cholesky's method for symmetric matrices, Matrix functions, Jacobi & Gauss-Seidel Iteration, Wegstein & Steffenson's version of Aitkin's Delta Square methods, Power method for Eigenproblems ** Nonlinear Equations: Ordinary Fixed-Point Iteration, Bisection, Secant, Regula Falsi, Newton & Quasi-Newton, Continuation (homotopy), Goal Seek, Solver, Bairstow's method for polynomial roots ** Derivative Approximation: Finite Difference, Richardson's extrapolation, Jacobian, Sensitivity Analysis, Lagrange polynomials, splines ** Uncertainty Analysis: Jitter method for the Law of Propagation of Uncertainty, Monte Carlo with Latin-Hypercube sampling, Jack knife for regression parameter uncertainty ** Optimization: Graphical, Quadratic with acceleration, Powell, Golden Section, Luus-Jaakola, Solver (for linear and nonlinear programming), Parameter Scaling ** Least-squares Regression: multivariate linear models, Gauss-Newton, Levenberg-Marquardt, and Monte Carlo for nonlinear regression with parameter uncertainty, Rational Least Squares, Weighting ** Interpolation: Linear, Newton Divided Difference, Lagrange, Rational, Stineman, Cubic Spline, Constrained Splines, Bivariate 2-D, Data Smoothing ** Integration: Trapezoid, Improper, Midpoint, Romberg, Adaptive Gauss-Kronrod & Simpson, Splines, multiple integrals with Simpson, Kronrod, & Monte Carlo methods ** Initial-Value ODEs: Taylor Series, improved & modified Euler, implicit Trapezoidal for stiff problems, fixed & variable single step 4-5 order Runge-Kutta, Cash-Karp & Dormand-Prince, Adams-Bashforth-Moulton multi-step methods ** Boundary Value ODEs and PDEs: Shooting, Finite Difference, Collocation on Finite Elements, Quasilinearization, Method of Lines, semi-implicit Crank-Nicholson methods ** Tables for quick reference of Excel, VBA, and custom functions & macros for numerical m

Numerical Methods and Modeling for Chemical Engineers

Author: Mark E. Davis
Publisher: Courier Corporation
ISBN: 0486782328
Format: PDF, ePub, Docs
Download Now
This text introduces the quantitative treatment of differential equations arising from modeling physical phenomena in chemical engineering. Coverage includes recent topics such as ODE-IVPs, emphasizing numerical methods and modeling of 1984-era commercial mathematical software.